Exactly Solvable Schrödinger Equation with Hypergeometric Wavefunctions
نویسندگان
چکیده
منابع مشابه
Exactly Solvable Schrödinger Equation with Hypergeometric Wavefunctions
In this work, the canonical transformation method is applied to a general second order differential equation (DE) in order to trasform it into a Schrödinger-like DE. Our proposal is based on an auxiliary function g(x) which determines the transformation needed to find exactly-solvable potentials associated to a known DE. To show the usefulness of the proposed approach, we consider explicitly th...
متن کاملAn Exactly Solvable Chaotic Differential Equation
We show that continuous-time chaos can be defined using linear dynamics and represented by an exact analytic solution. A driven linear differential equation is used to define a low-dimensional chaotic set of continuous-time waveforms. A nonlinear differential equation is derived for which these waveforms are exact analytic solutions. This nonlinear system describes a chaotic semiflow with a ret...
متن کاملOn Exactly Solvable Potentials
We investigate two methods of obtaining exactly solvable potentials with analytic forms. PACS numbers:03.65.Ge,11.30.Pb There are two methods of obtaining exactly solvable potentials in quantum mechanics. The first method was developed by applying the technique of supersymmetry (SUSY) to the Schrödinger equation and obtain two potentials with almost identical spectra. The two potentials can be ...
متن کاملQuasi - Exactly Solvable Potentials
We describe three di erent methods for generating quasi-exactly solvable potentials, for which a nite number of eigenstates are analytically known. The three methods are respectively based on (i) a polynomial ansatz for wave functions; (ii) point canonical transformations; (iii) supersymmetric quantum mechanics. The methods are rather general and give considerably richer results than those avai...
متن کاملQuasi - Exactly - Solvable Differential Equations
A general classification of linear differential and finite-difference operators possessing a finite-dimensional invariant subspace with a polynomial basis is given. The main result is that any operator with the above property must have a representation as a polynomial element of the universal enveloping algebra of the algebra of differential (difference) operators in finitedimensional represent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2015
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2015.311173